A Low-Cost Heliostat Design

Doug Simmers
A Better Focus Co.
Solar Cooking Perspective
Problems

- Solar energy is plentiful, but very diffuse
- Concentrating systems provide higher energy levels for wider applications
 - Traditional Rankin Steam Cycles
 - Sterling and Other Heat Engines
 - Concentrating Photovoltaics
 - Air Conditioning
Problems

- Increasing energy costs make all solar applications more viable
- But-- there is still a significant cost differential between delivered solar energy, and traditional sources
- We must close this cost gap in order for solar technology to gain widespread acceptance
Heliostat Development Goals

- Achieve “best cost” design for a concentrating heliostat
- Progression
 - Stretched membranes possibly offer the lowest cost method of reflecting sunlight
Heliostat Development Goals

- Stretched membranes are not new,
 - First patents for solar applications date back to 1962
 - Many others have moved the art forward, but there have been problems
 - Expensive and heavy support structures
 - Wrinkling of film
 - Thermal stability
 - Vacuum overhead
 - Scaling
 - Cost
 - Weather ability
 - UV, rain, wind, abrasion resistance
 - Catastrophic Wind and Hail Events
Heliostat Design Elements

- Frame - providing
 - a raised planar surface for the attachment of the film
 - clearance for vacuum deformation

Cross-Sectional View

Reflective film

Simple Ring

Sealing Film

Drum-Type design offers more depth for film deflection
Problem- simple ring or drum tends to oval under load, or it’s own weight
Design Solution - Structural Foam Board Backplane

Structural foam board backplane
Prevents ovaling of ring,
And minimizes the depth required for film deformation

PVC piping ring prevents warping,
or “potato-chipping” of foam board

Patent pending
With Application of vacuum, the structural foam board backplane becomes slightly concave, increasing The strength of the total assembly
Design Elements

- Expensive and heavy support structures
- Wrinkling of film
- Thermal stability
- Vacuum overhead
- Scaling
- Cost
- Weather ability
 - UV, rain, wind, abrasion resistance
 - Catastrophic Wind and Hail Events
Heliostat Design Elements

– Film Wrinkling
 • Reflective film tends to wrinkle badly as the vacuum deforms it into a concave shape
Heliostat Design Elements

– Film Wrinkling
 • Solution is a floating batten that stops the inward propagation of the wrinkles.

* Batten depicted on the outer surface of the film for clarity

Dish with floating battens attached to the inner surface of the reflective film.
Heliostat Design Elements

- Expensive and heavy support structures
- Wrinkling of film
- Thermal stability
- Vacuum overhead
- Scaling
- Cost
- Weather ability
 - UV, rain, wind, abrasion resistance
 - Catastrophic Wind and Hail Events
Heliostat Design Elements

– Thermal Stability
 • Reflective film has a different coefficient of expansion than the supporting ring.
 • Film gets loose when exposed to temperatures lower than those at which it was stretched.
Heliostat Design Elements

– Thermal Stability
 • Solution is solar heating of the support ring
 • Since a heliostat is intended to always face the sun, this heating is always at work

Solar radiation

Cross-Sectional View

- Heat Absorbing Layer
- Reflective Film
- Insulating Layer
- Conductive foil layer
- Support Ring

Structural Foam board

• Patent pending
Heliostat Design Elements

– Thermal Stability
 • 26 degree F ambient temp.
 • RH dish w/o solar tensioning
 • LH dish with solar tensioning

*Solar tensioning works only with sunlight

• Patent pending
Heliostat Design Elements

- Expensive and heavy support structures
- Wrinkling of film
- Thermal stability
- Vacuum overhead
- Scaling
- Cost
- Weather ability
 - UV, rain, wind, abrasion resistance
 - Catastrophic Wind and Hail Events
Heliostat Design Elements

• Vacuum Overhead
 – Stretched membrane systems require a vacuum to focus light
 – Energy required to establish and maintain a vacuum must be subtracted from the total energy generated
 – Leakage rates average 1 foot loss of focal length per 30 minutes
 – No measurements of vacuum pump energy requirements have been taken, however

• One advantage of vacuum systems is once the vacuum is released, the dish returns to a safe flat mirror state
Heliostat Design Elements

- Expensive and heavy support structures
- Wrinkling of film
- Thermal stability
- Vacuum Overhead
- Scaling
- Cost
- Weather ability
 - UV, rain, wind, abrasion resistance
 - Catastrophic Wind and Hail Events
Heliostat Design Elements

- Scaling
 - 4’ diameter dishes are currently manufactured in low volumes.
 - 8’ diameter prototype is in testing
 - 10’ diameter is feasible.
Performance

- Performance of 8’ diameter dish
 - 1250 F maximum temperature
 - @ 850 W/M² Solar Insolation
Performance

• Receiver Test Rig
 – Heating water in Insulated pot
 – Type K Thermocouple
 – Daystar meter
ASHRAE Standard x580

\[W = (T_f - T_i)MC_v/S, \]

- \(W \): Watts
- \(T_f \): Final Temperature
- \(T_i \): Initial Temperature
- \(M \): Mass of Water + Mass of pot
- \(C_v \): Specific heat of water and pot
- \(S \): Seconds
Heliostat Design Elements

- Expensive and heavy support structures
- Wrinkling of film
- Thermal stability
- Vacuum Overhead
- Scaling
- Cost
- Weather ability
 - UV, rain, wind, abrasion resistance
 - Catastrophic Wind and Hail Events
Heliostat Design Elements

– Material Cost
 • 4’ diameter dishes are currently manufactured in low volumes
 • Material cost is $24/M²
 • 8’ diameter prototype material cost is $35/M²
– Labor hours are currently very high, but the design is suitable for high-volume manufacture
 • Powered rotary fixtures
 • Combining multiple operations in each revolution
– Weather able film will increase material cost significantly
Heliostat Design Elements

- Expensive and heavy support structures
- Wrinkling of film
- Thermal stability
- Vacuum Overhead
- Scaling
- Cost
- Weather ability
 - UV, rain, wind, abrasion resistance
 - Catastrophic Wind and Hail Events
Heliostat Design Elements

- Weather ability
 - All current dish materials are weather able, except reflective film (polyethylene)
 - PVC lined foam board
 - Silicone and polyurethane sealants
 - NREL’s Advanced Materials Group is conducting accelerated life testing on film materials. 10 year life may be possible.
 - No reflective film is likely to survive major wind and hail events.
 - Tracking mechanism with redundant stowage modes
 - Active mode initiated by anemometer/wind direction
 - Breakaway weathervaning mode
Weathervane Mount - Single Heliostat
Weathervane Mount-Dish/Engine Arrangement

- multiple dishes

receiver

tracking structure

wind
Heliostat Design Elements

– Plan Moving Forward

• 7/06- Look for a test partner to verify performance
• 10/06- construct 8’ dish with weather able film
 – Begin outdoor testing
• winter 06/07- Design dish/engine mechanism
 – Tracking
 – Stowage
• Spring 07- construct and test 10’ prototype
• Summer 07- begin construction of dish/engine components
Doug Simmers
A Better Focus Co.
www.abetterfocus.com
Doug@abetterfocus.com
330-309-7561